35 research outputs found

    pGQL: A probabilistic graphical query language for gene expression time courses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Timeboxes are graphical user interface widgets that were proposed to specify queries on time course data. As queries can be very easily defined, an exploratory analysis of time course data is greatly facilitated. While timeboxes are effective, they have no provisions for dealing with noisy data or data with fluctuations along the time axis, which is very common in many applications. In particular, this is true for the analysis of gene expression time courses, which are mostly derived from noisy microarray measurements at few unevenly sampled time points. From a data mining point of view the robust handling of data through a sound statistical model is of great importance.</p> <p>Results</p> <p>We propose probabilistic timeboxes, which correspond to a specific class of Hidden Markov Models, that constitutes an established method in data mining. Since HMMs are a particular class of probabilistic graphical models we call our method Probabilistic Graphical Query Language. Its implementation was realized in the free software package pGQL. We evaluate its effectiveness in exploratory analysis on a yeast sporulation data set.</p> <p>Conclusions</p> <p>We introduce a new approach to define dynamic, statistical queries on time course data. It supports an interactive exploration of reasonably large amounts of data and enables users without expert knowledge to specify fairly complex statistical models with ease. The expressivity of our approach is by its statistical nature greater and more robust with respect to amplitude and frequency fluctuation than the prior, deterministic timeboxes.</p

    The impact of the COVID-19 pandemic on the mental health of healthcare workers:study protocol for the COVID-19 HEalth caRe wOrkErS (HEROES) study

    Get PDF
    BACKGROUND: Preliminary country-specific reports suggest that the COVID-19 pandemic has a negative impact on the mental health of the healthcare workforce. In this paper, we summarize the protocol of the COVID-19 HEalth caRe wOrkErS (HEROES) study, an ongoing, global initiative, aimed to describe and track longitudinal trajectories of mental health symptoms and disorders among health care workers at different phases of the pandemic across a wide range of countries in Latin America, Europe, Africa, Middle-East, and Asia. METHODS: Participants from various settings, including primary care clinics, hospitals, nursing homes, and mental health facilities, are being enrolled. In 26 countries, we are using a similar study design with harmonized measures to capture data on COVID-19 related exposures and variables of interest during two years of follow-up. Exposures include potential stressors related to working in healthcare during the COVID-19 pandemic, as well as sociodemographic and clinical factors. Primary outcomes of interest include mental health variables such as psychological distress, depressive symptoms, and posttraumatic stress disorders. Other domains of interest include potentially mediating or moderating influences such as workplace conditions, trust in the government, and the country’s income level. RESULTS: As of August 2021, ~ 34,000 health workers have been recruited. A general characterization of the recruited samples by sociodemographic and workplace variables is presented. Most participating countries have identified several health facilities where they can identify denominators and attain acceptable response rates. Of the 26 countries, 22 are collecting data and 2 plan to start shortly. CONCLUSIONS: This is one of the most extensive global studies on the mental health of healthcare workers during the COVID-19 pandemic, including a variety of countries with diverse economic realities and different levels of severity of pandemic and management. Moreover, unlike most previous studies, we included workers (clinical and non-clinical staff) in a wide range of settings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00127-021-02211-9

    High-throughput quantitation of amino acids and acylcarnitine in cerebrospinal fluid: identification of PCNSL biomarkers and potential metabolic messengers

    Get PDF
    Background: Due to the poor prognosis and rising occurrence, there is a crucial need to improve the diagnosis of Primary Central Nervous System Lymphoma (PCNSL), which is a rare type of non-Hodgkin’s lymphoma. This study utilized targeted metabolomics of cerebrospinal fluid (CSF) to identify biomarker panels for the improved diagnosis or differential diagnosis of primary central nervous system lymphoma (PCNSL).Methods: In this study, a cohort of 68 individuals, including patients with primary central nervous system lymphoma (PCNSL), non-malignant disease controls, and patients with other brain tumors, was recruited. Their cerebrospinal fluid samples were analyzed using the Ultra-high performance liquid chromatography - tandem mass spectrometer (UHPLC-MS/MS) technique for targeted metabolomics analysis. Multivariate statistical analysis and logistic regression modeling were employed to identify biomarkers for both diagnosis (Dx) and differential diagnosis (Diff) purposes. The Dx and Diff models were further validated using a separate cohort of 34 subjects through logistic regression modeling.Results: A targeted analysis of 45 metabolites was conducted using UHPLC-MS/MS on cerebrospinal fluid (CSF) samples from a cohort of 68 individuals, including PCNSL patients, non-malignant disease controls, and patients with other brain tumors. Five metabolic features were identified as biomarkers for PCNSL diagnosis, while nine metabolic features were found to be biomarkers for differential diagnosis. Logistic regression modeling was employed to validate the Dx and Diff models using an independent cohort of 34 subjects. The logistic model demonstrated excellent performance, with an AUC of 0.83 for PCNSL vs. non-malignant disease controls and 0.86 for PCNSL vs. other brain tumor patients.Conclusion: Our study has successfully developed two logistic regression models utilizing metabolic markers in cerebrospinal fluid (CSF) for the diagnosis and differential diagnosis of PCNSL. These models provide valuable insights and hold promise for the future development of a non-invasive and reliable diagnostic tool for PCNSL

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Aufgabenstellung für die Diplomarbeit

    No full text
    ERKLÄRUNG Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise, bereits für eine andere Prüfung angefertigt wurde. _________________ _ ___________________________________

    Quantitative structure-property relationship modeling of polar analytes lacking UV chromophores to charged aerosol detector response

    No full text
    In this study, a quantitative structure-property relationship model was built in order to link molecular descriptors and chromatographic parameters as inputs towards CAD responsiveness. Aminoglycoside antibiotics, sugars, and acetylated amino sugars, which all lack a UV/vis chromophore, were selected as model substances due to their polar nature that represents a challenge in generating a CAD response. Acetone, PFPA, flow rate, data rate, filter constant, SM5_B(s), ATS7s, SpMin1_Bh(v), Mor09e, Mor22e, E1u, R7v+, and VP as the most influential inputs were correlated with the CAD response by virtue of ANN applying a backpropagation learning rule. External validation on previously unseen substances showed that the developed 13-6-3-1 ANN model could be used for CAD response prediction across the examined experimental domain reliably (R-2 0.989 and RMSE 0.036). The obtained network was used to reveal CAD response correlations. The impact of organic modifier content and flow rate was in accordance with the theory of the detector's functioning. Additionally, the significance of SpMin1_Bh(v) aided in emphasizing the often neglected surface-dependent CAD character, while the importance of Mor22e as a molecular descriptor accentuated its dependency on the number of electronegative atoms taking part in charging the formed particles. The significance of PFPA demonstrated the possibility of using evaporative chaotropic reagents in CAD response improvement when dealing with highly polar substances that act as kosmotropes. The network was also used in identifying possible interactions between the most significant inputs. A joint effect of PFPA and acetone was shown, representing a good starting point for further investigation with different and, especially, eco-friendly organic solvents and chaotropic agents in the routine application of CAD
    corecore